精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.
(1) ; (2)两圆心距为,所以两圆内切.

试题分析:(1)由于e= ∴           1分
 ∴           3分
         4分
所以椭圆的方程为:             5分
(2)由(1)可知,直线与椭圆的一个交点为
则以为直径的圆方程是,圆心为,半径为        9分
以椭圆长轴为直径的圆的方程是,圆心是,半径是          11分
两圆心距为,所以两圆内切.            14分
点评:中档题,本题椭圆的标准方程时,应用椭圆的几何性质,属于常见类型。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题研究圆与圆的位置关系,注意考查圆心距与半径和(差)的关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线经过椭圆的左焦点,且经过抛物线与椭圆两个交点的弦过抛物线的焦点,则椭圆的离心率为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线Cy=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆mx2 + ny2 = 1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,lC交于AB两点,C的实轴长的2倍,则双曲线C的离心率为(    )
A.B.2C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰直角三角形,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已经双曲线x-my=m(m>0)的一条渐近线与直线2x-y+3=0垂直,则该双曲线的准线方程为
A.x=B.x=C.x=D.x=

查看答案和解析>>

同步练习册答案