精英家教网 > 高中数学 > 题目详情
甲、乙、丙3人投篮,投进的概率分别是
2
5
1
2
1
3
.现3人各投篮1次,则3人中恰有2人投进的概率是
3
10
3
10
分析:本题考查的知识点是相互独立事件的概率乘法公式和加法公式,3人中恰有2人投进分为三种情况,即甲未投进,乙和丙均投进,乙未投进,甲和丙均投进,丙未投进,甲和乙均投进,再结合题意与相互独立事件的概率乘法公式可得答案.
解答:解:记“甲投进“为事件A1,“乙投进“为事件A2,“丙投进“为事件A3,则P(A1)=
2
5
,P(A2)=
1
2
,P(A3)=
1
3

设“3人中恰有2人投进“为事件B
所以P(B)=P(
.
A1
A2A3)+P(A1
.
A2
A3)+P(A1A2
.
A3

=P(
.
A1
)•P(A2)•P(A3)+P(A1)•P(
.
A2
)•P(A3)+P(A1)•P(A2)•P(
.
A3

=(1-
2
5
)×
1
2
×
1
3
+
2
5
×(1-
1
2
)×
1
3
+
2
5
×
1
2
×
2
3
=
3
10

∴3人中恰有2人投进的概率为
3
10

故答案为:
3
10
点评:本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后关键相应公式解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙3人投篮,投进的概率分别是
1
3
2
5
1
2

(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙3人投篮,投进的概率分别是
2
5
1
2
1
3
.现3人各投篮1次,求:
(Ⅰ)3人都投进的概率;
(Ⅱ)3人中恰有2人投进的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙3人投篮,投进的概率分别是
1
3
2
5
1
2

(1)现3人各投篮1次,求3人都没有投进的概率;
(2)用ξ表示乙投篮10次的进球数,求随机变量ξ的概率分布及数学期望Eξ和方差Dξ;
(3)若η=4ξ+1,求Eη和Dη.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第三次月考考试文科数学 题型:解答题

(13分)甲、乙、丙3人投篮,投进的概率分别是. 现3人各投篮1次,

求:(Ⅰ)3人都投进的概率

(Ⅱ)3人中恰有2人投进的概率

 

 

查看答案和解析>>

同步练习册答案