精英家教网 > 高中数学 > 题目详情
精英家教网已知直角三角形ABC的斜边长AB=2,现以斜边AB为轴旋转一周,得旋转体.
(1)当∠A=30°时,求此旋转体的体积;
(2)比较当∠A=30°、∠A=45°时,两个旋转体表面积的大小.
分析:(1)直角三角形ABC的斜边长AB=2,现以斜边AB为轴旋转一周,得旋转体,是由两个圆锥组成的几何体,求出圆锥的底面半径,即可求出几何体的体积.
(2)只需比较两个旋转体的底面半径和高的大小,分别求出当∠A=30°、∠A=45°时,两个旋转体表面积的大小.即可比较.
解答:解:(1)直角三角形ABC的斜边长AB=2,现以斜边AB为轴旋转一周,得旋转体,是由两个圆锥组成的几何体,它们的底面半径为:
3
2
,所以旋转体的体积为:
1
3
×π(
3
2
)
2
×2
=
π
2

(2)由(1)可知几何体的表面积为:
1
2
×
3
π×(1+
3
)
=
3+
3
2
π

∠A=45°时,旋转体表面积的大小为:
1
2
×2π×(2
2
)
=2
2
π;
显然2
2
π>
3+
3
2
π

所以∠A=45°时,旋转体表面积的大.
点评:本题是中档题,考查旋转体的体积,旋转体的图形特征,圆锥的表面积和体积,考查空间想象能力,计算能力,是常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直角三角形ABC的斜边长AB=2,∠A=30°现以斜边AB为轴旋转一周,得旋转体.
(1)求此旋转体的体积;(2)求旋转体表面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何里,已知直角三角形ABC中,角C为90°,AC=b,BC=a,运用类比方法探求空间中三棱锥的有关结论:
有三角形的勾股定理,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC

若三角形ABC的外接圆的半径为r=
a2+b2
2
,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,已知直角三角形△ABC的三边CB,BA,AC的长度成等差数列,点E为直角边AB的中点,点D在斜边AC上,且
AD
AC
,若CE⊥BD,则λ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角三角形ABC,其中∠ABC=60.,∠C=90°,AB=2,求△ABC绕斜边AB旋转一周所形成的几何体的表面积和体积.

查看答案和解析>>

同步练习册答案