精英家教网 > 高中数学 > 题目详情
给出函数f(x)=
(
1
2
)x,x≥4
f(x+1),x<4
则f(log23)等于(  )
A、-
23
8
B、
1
11
C、
1
19
D、
1
24
分析:先根据对数函数的性质判断log23的范围,代入相应的解析式求解,再判断所得函数值的范围,再代入对应解析式求解,利用对数的恒等式“a
log
N
a
=N”进行求解.
解答:解:∵log23<4,
∴f(log23)=f(log23+3),
∵log23+3>4,
∴f(log23+3)=(
1
2
)
(log
2
3
+3)
=(
1
2
)
3
×(
1
2
)
log23
=
1
24

故选D.
点评:本题是对数的运算和分段函数求值问题,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,利用“a
log
N
a
=N”进行求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=log2(1+x4)-
1+mx1+x2
(x∈R)是偶函数.
(Ⅰ)求实常数m的值,并给出函数f(x)的单调区间(不要求证明);
(Ⅱ)k为实常数,解关于x的不等式:f(x+k)>f(|3x+1|).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义fk(x)=
f(x),f(x)≤K
K,f(x)>K
,给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有fk(x)=f(x),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

.函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)f(x)的定义域和值域均为[-1,1];(2)f(x)是奇函数;(3)函数在定义域上单调递增;(4)函数f(x)有两零点;(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.则函数f(x)有关性质中正确描述的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R,对于给定的正数k,定义函数fk(x)=
f(x),(f(x)≤k)
k,(f(x)>k)
,给出函数f(x)=-x2+4x-2,若对任意的x∈R,恒有fk(x)=f(x),则(  )
A、k的最大值为2
B、k的最小值为2
C、k的最大值为1
D、k的最小值为1

查看答案和解析>>

同步练习册答案