精英家教网 > 高中数学 > 题目详情
5、已知数列an是等差数列,Sn是an的前n项和,a3+a4+a5=-6,a8=6,则(  )
分析:根据等差数列的通项公式,由a3+a4+a5=-6,a8=6得到关于首项和公差的方程组,求出方程组的解即可得到首项和公差,然后利用等差数列的前n项和的公式即可判断出正确答案.
解答:解:由a3+a4+a5=-6,a8=6得:
a1+3d=-2①,a1+7d=6②,②-①得:4d=8,解得d=2,
把d=2代入①,解得a1=-8,
则Sn=-8n+n(n-1)=n2-9n,
所以S5=25-45=-20<S6=36-54=-18,S11=121-99=22,
故选D
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案