精英家教网 > 高中数学 > 题目详情
11.已知0<a≤1,0<b≤1,0<c≤1,求证:$\frac{1+ab+bc+ca}{a+b+c+abc}$≥1.

分析 由0<a≤1,0<b≤1,0<c≤1,可得1-a≥0,1-b≥0,1-c≥0,运用作差法,由(1+ab+bc+ca)-(a+b+c+abc)因式分解可得(1-a)(1-b)(1-c),即可得证.

解答 证明:由0<a≤1,0<b≤1,0<c≤1,
可得1-a≥0,1-b≥0,1-c≥0,
由(1+ab+bc+ca)-(a+b+c+abc)
=1+ac+b(a+c)-a-c-b(1+ac)
=(1+ac-a-c)+b(a+c-1-ac)
=(1-a)(1-c)+b(a-1)(1-c)
=(1-a)(1-c)(1-b)≥0,
可得1+ab+bc+ca≥a+b+c+abc,
则有$\frac{1+ab+bc+ca}{a+b+c+abc}$≥1.

点评 本题考查不等式的证明,考查作差法的运用,注意运用因式分解的方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知梯形ABCP,如图(1)所示,D是CP边的中点,AB∥PC,且2AB=PC,△APD为等边三角形,现将平面APD沿AD翻折,使平面APD⊥平面ABCD,得到如图(2)所示的四棱锥P-ABCD,点M在棱PC上,且PM=$\sqrt{3}$MC.
(1)证明:AD⊥PB;
(2)求二面角P-AD-M的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形CDEF所在的平面与直角梯形ABCD所在的平面垂直,其中AB∥CD,AB=1,BC=$\frac{1}{2}CD=2$,BC⊥CD,MB∥FC,MB=FC=3.P、Q分别为BC、AE的中点.
(1)求证:PQ∥平面MAB;
(2)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函数f(x)的对称中心及在[-$\frac{π}{4}$,$\frac{π}{4}$]的取值范围;
(2)若△ABC为非直角三角形,a,b,c分别为A,B,C所对的边,f(A)=-$\frac{1}{2}$,b=1,S△ABC=2,求$\frac{a+b}{sinA+sinB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知,在四棱锥P-ABCD中,等边△APD所在平面垂直于平行四边形ABCD所在平面,M、N分别是棱BC与PD的中点.
(1)证明:MN∥平面PAB;
(2)已知∠ABC=$\frac{π}{3}$,BC=2AB=2,求三棱锥N-MCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数
(1)y=x$\sqrt{1+{x}^{2}}$
(2)y=xcos(2x+$\frac{π}{2}$)sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2(x-1)sinπx-1在区间[-2012,2014]内所有零点之和为(  )
A.2012B.4024C.2014D.4025

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)•$\frac{\sqrt{a\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U={(x,y)|y=x+1},A={(x,y)|y=x+1,-1<x<0},则点集∁UA表示的图形两条射线.

查看答案和解析>>

同步练习册答案