精英家教网 > 高中数学 > 题目详情

如图在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;

(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1l2,它们分别与圆C1C2相交,且直线l1被圆C1截得的弦长与直线l2C2截得的弦长相等.试求所有满足条件的点P的坐标.

解:(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为yk(x-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为2,所以d=1.

由点到直线的距离公式得d

从而k(24k+7)=0,即k=0或k=-

所以直线l的方程为y=0或7x+24y-28=0.

(2)设点P(ab)满足条件,不妨设直线l1的方程为ybk(xa),k≠0,则直线l2的方程为yb=-(xa).因为圆C1C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即

整理得|1+3kakb|=|5k+4-abk|,从而1+3kakb=5k+4-abk或1+3kakb=-5k-4+abk,即(ab-2)kba+3或(ab+8)kab-5,因为k的取值有无穷多个,所以

解得

这样点P只可能是点P1或点P2.

经检验点P1P2满足题目条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程.

(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届山东济宁任城一中高二上期中检测理科数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,已知椭圆经过点,椭圆的离心率.

(1)求椭圆的方程;

(2)过点作两直线与椭圆分别交于相异两点.若的平分线与轴平行, 试探究直线的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届新课标版高三上学期第四次月考理科数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上.

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;

(2)若圆上存在点,使,求圆心的横坐标的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三年级暑期检测数学试卷(解析版) 题型:解答题

(本小题满分16分)

如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭

圆上, .

 

(1)求直线的方程;

(2)求直线被过三点的圆截得的弦长;

(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市、盐城市高三第一次模拟考试数学(解析版) 题型:解答题

(本小题满分16分)   如图,在平面直角坐标系中,已知点为椭圆

的右顶点, 点,点在椭圆上, .

(1)求直线的方程; (2)求直线被过三点的圆截得的弦长;

(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不

存在,请说明理由

 

 

 

查看答案和解析>>

同步练习册答案