【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是
科目:高中数学 来源: 题型:
【题目】在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出,,的值;
(2)若为等差数列,求出所有可能的数列;
(3)设,,求的值.(用表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.
(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;
(Ⅱ)求该博物馆支付总费用的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y), .
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A、B、C所对的边分别为a,b,c且a=5,sinA= .
(I)若S△ABC= ,求周长l的最小值;
(Ⅱ)若cosB= ,求边c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当 = 时,求二面角B﹣CD﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (a>0).
(1)证明:当x>0时,f(x)在 上是减函数 ,在上是增函数,并写出当x<0时f(x)的单调区间;
(2)已知函数 ,函数g(x)=﹣x﹣2b,若对任意x1∈[1,3],总存在x2∈[1,3],使得g(x2)=h(x1)成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加装修费2万元,现把写字楼出租,每年收入租金30万元.
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案:
①年平均利润最大时,以50万元出售该楼;
②纯利润总和最大时,以10万元出售该楼;
问选择哪种方案盈利更多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com