【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于 .
【答案】
(1)
解:若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,
分两种情况讨论:
①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,
此时f(x)的单调递增区间为(﹣∞,+∞),
②、当a>0时,令f′(x)=3x2﹣a=0,解得x=- 或x= ,
当x> 或x<﹣ 时,f′(x)=3x2﹣a>0,f(x)为增函数,
当﹣ <x< 时,f′(x)=3x2﹣a<0,f(x)为减函数,
故f(x)的增区间为(﹣∞,﹣ ),( ,+∞),减区间为(﹣ , )
(2)
解:若f(x)存在极值点x0,则必有a>0,且x0≠0,
由题意可得,f′(x)=3x2﹣a,则x02= ,
进而f(x0)=x03﹣ax0﹣b=﹣ x0﹣b,
又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣ x0+2ax0﹣b=f(x0),
由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,
则有x1=﹣2x0,故有x1+2x0=0;
(3)
解:设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,
下面分三种情况讨论:
①当a≥3时,﹣ ≤﹣1<1≤ ,
由(I)知f(x)在区间[﹣1,1]上单调递减,
所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],
因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}
=max{|a﹣1+b|,|a﹣1﹣b|}= ,
所以M=a﹣1+|b|≥2
②当 a<3时, ,
由(Ⅰ)、(Ⅱ)知,f(﹣1)≥ =f( ),f(1)≤ = ,
所以f(x)在区间[﹣1,1]上的取值范围是[f( ),f(﹣ )],
因此M=max{|f( )|,|f(﹣ )|}=max{| |,| |}
=max{| |,| |}= ,
③当0<a< 时, ,
由(Ⅰ)、(Ⅱ)知,f(﹣1)< =f( ),f(1)> = ,
所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],
因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}
=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|> ,
综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于
【解析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0 , 分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;
(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.
本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.
科目:高中数学 来源: 题型:
【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为,直线与抛物线相交于不同的, 两点.
(1)求抛物线的标准方程;
(2)如果直线过抛物线的焦点,求的值;
(3)如果,直线是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB,CD是圆O中两条互相垂直的直径,两个小圆与圆O以及AB,CD均相切,则往圆O内投掷一个点,该点落在阴影部分的概率为( )
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ.
(Ⅰ)求曲线C1的极坐标方程及曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1 , C2交于O,A两点,过O点且垂直于OA的直线与曲线C1 , C2交于M,N两点,求|MN|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sincos x+.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com