分析 (1)令x=y=0,可解得f(0)=0,再令y=-x,即可证得y=f(x)是奇函数;
(2)利用f(1)=3,f(x+y)=f(x)+f(y),可求得f(3),再利用y=f(x)是奇函数即可求得f(-3)的值.
解答 证明:(1)令x=y=0,则f(0+0)=f(0)+f(0),
解得f(0)=0;
令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x),
∴y=f(x)是奇函数;
(2)解:∵f(1)=8,f(x+y)=f(x)+f(y),
∴f(2)=f(1+1)=f(1)+f(1)=2f(1)=6,
f(n)=8n.
又y=f(x)是奇函数;
∴f(-n)=-f(n)=-8n.
点评 本题考查抽象函数及其应用,着重考查赋值法,考查函数奇偶性的判断与应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7\sqrt{2}}{2}$ | B. | 7$\sqrt{2}$ | C. | $\frac{3\sqrt{10}}{2}$ | D. | 3$\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 20% | B. | 10% | C. | 15% | D. | 12% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com