精英家教网 > 高中数学 > 题目详情
(1)计算:|1+lg0.001|+
lg22-4lg2+4
+lg6-lg0.03
(2)化简:
x
1
2
+xy
1
2
x-y
-
xy+x
1
2
y
1
2
+y2
x
1
2
-y
1
2
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:(1)化小数为分数,化根式内部的代数式为完全平方,开方后整理,再利用对数的运算性质化简求值;
(2)把原式的分子提取公因式,约分后化简求值.
解答: 解:(1)|1+lg0.001|+
lg22-4lg2+4
+lg6-lg0.03
=|1+lg10-3|+
lg22-4lg2+4
+lg6-lg
3
100

=|1-3|+
(lg2-2)2
+lg6-lg3+2

=2+2-lg2+lg6-lg3+2
=6;
(2)
x
1
2
+xy
1
2
x-y
-
xy+x
1
2
y
1
2
+y2
x
1
2
-y
1
2

=
x(x
1
2
+y
1
2
)
x-y
-
y(x+x
1
2
y
1
2
+y)
(x
1
2
-y
1
2
)(x+x
1
2
y
1
2
+y)

=
x
x
1
2
-y
1
2
-
y
x
1
2
-y
1
2

=x
1
2
+y
1
2
点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,其图象关于直线x=1对称.当x∈[-1,1]时,f(x)=x,求当x∈[-3,-1]时,f(x)的解析式和f(-4.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log2
x
4
•log2
x
8
(x∈[
1
4
,8]的最大值和最小值并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-cos22x+
3
sin2xcos2x+
3
2

(1)将f(x)化成Asin(ωx+φ)+B的形成,并求出其周期;
(2)当x∈[-
π
12
π
6
],求f(x)的值域并指出取得最大最小值的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图中的正(主)视图、侧(左)视图、俯视图均是大小形状完全相同的图形,那么这个几何体可能是(  )
A、球B、圆柱C、三棱柱D、圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,f(a+2)=27,g(x)=λ•2ax-4x的定义域是[0,1]
(1)求a的值;
(2)若函数g(x)的最大值为
1
2
,求实数λ的值;
(3)若函数g(x)在[0,1]是单调减函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4+x2
4-x2

(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)求证:f(
2
x
)=-f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a+
1
4x+1
,对任意x∈R时,f(x)是奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面区域由
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
组成.
①求Z=2x+y的最大值;
②求x2+y2的最小值.

查看答案和解析>>

同步练习册答案