精英家教网 > 高中数学 > 题目详情

【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)当k=2时,求炮的射程;
(2)求炮的最大射程;
(3)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以其中它?请说明理由.

【答案】解:(1)∵k=2,y=kx-,可得:y=2x-,y=0,可得x=0,x=8.
炮的射程为:8千米.
(2)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.
由实际意义和题设条件知x>0,k>0.
∴x===10,当且仅当k=1时取等号.
∴炮的最大射程是10千米.
(3)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2≥3.2成立,
即关于k的方程a2k2﹣20ak+a2+64=0有正根.
由韦达定理满足两根之和大于0,两根之积大于0,
故只需△=400a2﹣4a2(a2+64)≥0,得a≤6.
此时,k=>0.
∴当a不超过6时,炮弹可以击中目标.
【解析】(1)通过k=2,化简函数解析式,再利用二次函数求解射程.
(2)求炮弹击中目标时的横坐标的最大值,用一元二次方程根的判别式求解即可.
(3)炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2≥3.2成立,转化为关于k的方程a2k2﹣20ak+a2+64=0有正根.利用判别式,求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 分别为椭圆 的左、右焦点,点在椭圆上.

(Ⅰ)求的最小值;

(Ⅱ)设直线的斜率为,直线与椭圆交于 两点,若点在第一象限,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(I)若曲线在点处的切线方程为,求的值;

(II)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形的三个顶点的坐标为 .

(1)求平行四边形的顶点的坐标;

(2)在中,求边上的高所在直线方程;

(3)求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为R上的奇函数,当x>0时,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式:
(1)已知loga <1,则a>
(2)函数y=2x的图象与函数y=2x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(﹣x2+x)的递增区间为(﹣∞, ]
正确的有 . (把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c(a≠0),记f[2](x)=f(f(x)),例:f(x)=x2+1,
则f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解关于x的方程f[2](x)=x;
(2)记△=(b﹣1)2﹣4ac,若f[2](x)=x有四个不相等的实数根,求△的取值范围.

查看答案和解析>>

同步练习册答案