【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)
(1)根据以上数据完成下面的2×2列联表:
主食 蔬菜 | 主食 肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.
附参考公式:
科目:高中数学 来源: 题型:
【题目】已知Q2=称为x,y的二维平方平均数,A2=称为x,y的二维算术平均数,G2=称为x,y的二维几何平均数,H2=称为x,y的二维调和平均数,其中x,y均为正数.
(1)试判断G2与H2的大小,并证明你的猜想.
(2)令M=A2﹣G2,N=G2﹣H2,试判断M与N的大小,并证明你的猜想.
(3)令M=A2﹣G2,N=G2﹣H2,P=Q2﹣A2,试判断M、N、P三者之间的大小关系,并证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,,在抛物线上,的重心与此抛物线的焦点重合(如图)
(I)写出该抛物线的方程和焦点的坐标;
(II)求线段中点的坐标;
(III)求弦所在直线的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区甲校高二年级有1 100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%)
甲校高二年级数学成绩:
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 10 | 25 | 35 | 30 | x |
乙校高二年级数学成绩:
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 15 | 30 | 25 | y | 5 |
(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分).
(2)若数学成绩不低于80分为优秀,低于80分的为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”
甲校 | 乙校 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是线段BC的中点.
(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
经常参加体育锻炼 | 40 | ||
不经常参加体育锻炼 | 15 | ||
总计 | 100 |
(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com