精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为,求双曲线的方程.
【答案】分析:由双曲线与椭圆有公共的焦点,我们可以确定双曲线焦点的坐标,又由椭圆的离心率与双曲线的离心率之比为,可以求出双曲线的离心率,进而求出双曲线的方程.
解答:解:双曲线焦点为,设方程为
又椭圆离心率为,设双曲线离心率e

∴a=3,b2=4
∴双曲线方程为
点评:本题考查的知识点是椭圆及双曲线的性质,其中根据椭圆的标准方程,求出椭圆的焦点坐标及离心率,进而根据已知求出双曲线的焦点坐标及离心率是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线与椭圆有公共的焦点为F1(0,-4),F2(0,4),它们的离心率之和为
145
,P为椭圆上一点,△PF1F2的周长为18
(1)求椭圆的离心率和椭圆的标准方程.
(2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高二上学期期中考试数学试卷 题型:解答题

(13分) (理科)已知双曲线与椭圆有公共焦点,且以抛物线的准线为双曲线的一条准线.动直线过双曲线的右焦点且与双曲线的右支交于两点.

(1)求双曲线的方程;

(2)无论直线绕点怎样转动,在双曲线上是否总存在定点,使恒成立?若存在,求出点的坐标,若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线与椭圆有公共的焦点为F1(0,-4),F2(0,4),它们的离心率之和为数学公式,P为椭圆上一点,△PF1F2的周长为18
(1)求椭圆的离心率和椭圆的标准方程.
(2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆有公共的焦点为F1(0,-4),F2(0,4),它们的离心率之和为
14
5
,P为椭圆上一点,△PF1F2的周长为18
(1)求椭圆的离心率和椭圆的标准方程.
(2)求双曲线的标准方程.

查看答案和解析>>

同步练习册答案