精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知圆,点,点在圆上运动,的垂直平分线交于点.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若为坐标原点,求直线的斜率

(Ⅲ)过点且斜率为的动直线交曲线两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.

(本小题满分14分)

解: (Ⅰ) 因为的垂直平分线交 于点. 所以

 

所以动点的轨迹是以点为焦点的椭圆……………2分

设椭圆的标准方程为

,则椭圆的标准方程为……4分

(Ⅱ) 设,则     ①

因为

     ②

由①②解得……………7分

所以直线的斜率……………8分

(Ⅲ)直线方程为,联立直线和椭圆的方程得:

   得…………9分

由题意知:点在椭圆内部,所以直线与椭圆必交与两点,

假设在轴上存在定点,满足题设,则

因为以为直径的圆恒过点,

,即:  (*)

因为

则(*)变为…………11分

 

由假设得对于任意的,恒成立,

解得……13分

因此,在轴上存在满足条件的定点,点的坐标为.………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案