精英家教网 > 高中数学 > 题目详情
若焦点在轴上的椭圆的离心率为,则m的值为(   )
A.1B.C.D.
B
已知椭圆方程可化成:,根据定义离心率,∴
,∴
∵焦点在轴上,∴
代入即有,解方程有;故选B。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上顶点为,离心率为,若不过点的动直线与椭圆相交于两点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线过定点,并求出该定点的坐标.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的一个焦点为,则的值为___________,双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线与椭圆相交于两个不同的点.
(1)求实数的取值范围;
(2)当时,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点。
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设椭圆C:的左、右焦点分别为,点满足  
(Ⅰ)求椭圆C的离心率
(Ⅱ)若已知点,设直线与椭圆C相交于A,B两点,且
求椭圆C的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(12分)已知椭圆的中心在原点,分别为它的左、右焦点,直线为它的一条准线,又知椭圆上存在点,使得.
(1)求椭圆的方程;
(2)若是椭圆上不与椭圆顶点重合的任意两点,点关于轴的对称点是,直线分别交轴于点,点,探究是否为定值,若为定值,求出该定值,若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别为椭圆的左、右两个焦点,一条直线经过点与椭圆交于两点, 且的周长为8。
(1)求实数的值;
(2)若的倾斜角为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且两条准线间的距离为的双曲线方程为(  )
A. B.  C.     D.

查看答案和解析>>

同步练习册答案