已知等比数列满足:,公比,数列的前项和为,且.
(1)求数列和数列的通项和;
(2)设,证明:.
(1),;(2)详见解析.
解析试题分析:(1)利用等比数列的通项公式求出数列的通项公式,然后先令求出的值,然后在的前提下,由得到,解法一是利用构造法得到
,构造数列为等比数列,求出该数列的通项公式,从而得出的通项公式;解法二是在的基础上得到,两边同除以得到, 利用累加法得到数列的通项公式,从而得到数列的通项公式;(2)利用放缩法得到
,从而证明,或者利用不等式的性质得到
,从而证明.
(1)解法一:由,得,,
由上式结合得,
则当时,,
,
,
,,
数列是首项为,公比为的等比数列,
,;
解法二:由,得,,
由上式结合得,
则当时,,
,
,
,
,,
;
(2)由得,
,
或
.
考点:1.等比数列的通项公式;2.定义法求数列的通项;3.放缩法证明数列不等式
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.
(Ⅱ)求证:对k≥3有0≤ak≤.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013·天津高考)已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式.
(2)证明Sn+≤(n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com