精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

【答案】(1)见解析;(2)0.

【解析】试题分析:(1)求函数的定义域和导数,讨论的取值范围,利用函数单调性和导数之间的关系进行求解即可.
(2)根据(1)求出求出函数的极小值为

恒成立,转化为恒成立,构造函数设 根据导数和函数的函数,求出 即可求出满足条件的最小整数

试题解析:

(1)的定义域为

①若,当时,

单调递减,

②若,由,得

(ⅰ)若,当时,

时,

单调递减,在 单调递增

(ⅱ)若 单调递增,

(ⅲ)若,当时,

时,

单调递减,在 单调递增

(2)由(1)得:若 单调递减,

单调递增

所以时, 的极小值为

恒成立,

恒成立

时,

所以单调递减,

所以

所以

因为

其中

因为上单调递增

所以

因为 ,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为(

A.①②B.①②④C.③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数,当时,

)求出函数上的解析式;

)画出函数的图象,并根据图象直接写出的单调区间;

)求使时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分) 已知双曲线的两个焦点为的曲线C.

)求双曲线C的方程;

)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中为真命题的是( )

A.,则的否命题B.,则的逆命题.

C.,则的否命题D.,则的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨、硝酸盐15吨,现库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料。如果生产1车皮甲种肥料,产生的利润为12000元;生产1车皮乙种肥料,产生的利润为7000元。那么可产生最大的利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差的等差数列的前项和为,且满足.

1)求数列的通项公式;

2)求证:是数列中的项;

3)若正整数满足如下条件:存在正整数,使得数列为递增的等比数列,求的值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20051215,中央密苏里州立大学的教授 Curtis Cooper Steven Boone发现了第43个麦森质数.这个质数是______位数;它的末两位数是______.

查看答案和解析>>

同步练习册答案