精英家教网 > 高中数学 > 题目详情

【题目】设A、B是椭圆上的两点,点是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.

(1)求直线AB的方程;

(2)判断A、B、C、D四点是否在同一个圆上?若是求出圆的方程,若不是说明理由.

【答案】(1);(2)是,.

【解析】

1)利用点差法列式进行化简,由此求得直线的斜率,进而求得直线的方程.2)求得直线的方程,代入椭圆方程,利用根与系数关系以及弦长公式,求得弦长,求得中点的坐标.同理求得弦长,计算到直线的距离,由此计算出

(1)设

则有,

依题意,

是AB的中点,

,从而

在椭圆内,

直线AB的方程为,即

(2)垂直平分AB,直线CD的方程为,即

代入椭圆方程,整理得①.

又设,CD的中点为,则是方程①的两根,

,且,即中点,

于是由弦长公式可得

将直线AB的方程,代入椭圆方程得,

同理可得

点M到直线AB的距离为

四点共圆,

且原方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的标准方程为:该椭圆经过点P(1,),且离心率为

Ⅰ)求椭圆的标准方程;

Ⅱ)过椭圆长轴上一点S(1,0)作两条互相垂直的弦AB、CD.若弦AB、CD的中点分别为M、N,证明:直线MN恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题正确的是(

A.

B.,都有

C.是函数的最小正周期为的充要条件

D.命题是假命题,则

E.已知,则的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线

椭圆的一个交点为,点

的焦点,且.

(1)的方程;

(2)为坐标原点,在第一象限内,椭圆上是否存在点,使过的垂线交抛物线,直线轴于,且?若存在,求出点的坐标和的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设桌面上有一个由铁丝围成的封闭曲线,周长是.回答下面的问题:

1)当封闭曲线为平行四边形时,用直径为的圆形纸片是否能完全覆盖这个平行四边形?请说明理由.

2)求证:当封闭曲线是四边形时,正方形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足性质:对于区间(1,2)上的任意恒成立的函数叫Ω函数,则下面四个函数中,属于Ω函数的是(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在等腰梯形中,=60°,沿折成三棱柱

(1)若分别为的中点,求证:∥平面

(2)若,求二面角的余弦值

查看答案和解析>>

同步练习册答案