精英家教网 > 高中数学 > 题目详情
已知偶函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[0,1]时,f(x)=x,则方程f(x)=|log3x|的实数解共有(  )
A、1个B、4个C、3个D、2个
分析:由f(x+1)=f(x-1),得f(x+2)=f(x)得函数的周期为2,根据函数的周期性和奇偶性作出函数f(x)与y=|log3x|的图象,即可得到结论.
解答:解:∵f(x+1)=f(x-1),精英家教网
∴f(x+2)=f(x),即函数的周期为2,
∵x∈[0,1]时,f(x)=x,
∴当x∈[-1,0]时,f(x)=-x.
作出函数f(x)与y=|log3x|的图象如图:
由图象可知两个图象的交点个数为3个,
故方程f(x)=|log3x|的实数解有3个,
故选:C.
点评:本题主要考查方程根的个数的判断,利用条件求出函数的周期性,根据方程和函数之间的关系,转化为两个函数图象的交点问题是解决本题的关键,利用数形结合是解决本题的基本思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

35、已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形的两内角,则(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)满足条件f(x+1)=f(x-1),且当x∈[-1,0]时,f(x)=3x+
4
9
,则f(log
1
3
5)
的值等于
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在区间(-∞,0]上是增函数,下列不等式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)(x∈R)在区间[0,3]上单调递增,在区间[3,+∞)上单调递减,且满足f(-4)=f(1)=0,则不等式x3f(x)<0的解集是(  )

查看答案和解析>>

同步练习册答案