精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分10分)

已知如下等式:

时,试猜想的值,并用数学归纳法给予证明.

【答案】解:由已知,猜想……………………………2分)

下面用数学归纳法给予证明:

1)当时,由已知得原式成立; ………………………………………………3分)

2)假设当时,原式成立,即……4分)

那么,当时,

=

时,原式也成立。……………………………………………………11分)

由(1)、(2)知成立 ……………12分)

【解析】先猜想,然后再用数学归纳法进行证明.

证明时分两个步骤:第一步,先验证是当n=1时,等式是否成立;

第二步,假设n=k时,等式成立;再证明当n=k+1时,等式也成立,再证明时一定要用上归纳假设.否则证明无效

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),).

(1)讨论的单调性;

(2)设 ,若)是的两个零点,且

试问曲线在点处的切线能否与轴平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点

(1)求椭圆的方程;

(2)过点作直线与椭圆交于两点,连接为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数

(2)设函数,其中a∈(1,2),求函数g(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x﹣1.
(1)求f(x)的函数解析式,并用分段函数的形式给出;
(2)作出函数f(x)的简图;
(3)写出函数f(x)的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,在数列中,

(1)求证: 是等比数列;

(2)若,求数列的前项和

(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是(
A.[﹣1,1]
B.[﹣ ]
C.[﹣ ,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案