分析 设A(x1,y1),D(x2,y2),抛物线的焦点为F,由题得|BF|=|CF|=$\frac{p}{2}$.由抛物线的定义得:|AC|=|AF|+|CF|=$\frac{p}{2}$+x1+$\frac{p}{2}$=x1+p,同理得|BD|=x2+p.联立直线4x+3y-2p=0与抛物线y2=2px且消去x解出y1=$\frac{p}{2}$,y2=-2p,所以x1=$\frac{p}{8}$,x2=2p,进而得到答案.
解答 解:设A(x1,y1),D(x2,y2),抛物线的焦点为F,
由题意得|BF|=|CF|=$\frac{p}{2}$,
由抛物线的定义得:|AC|=|AF|+|CF|=$\frac{p}{2}$+x1+$\frac{p}{2}$=x1+p,同理得|BD|=x2+p.
联立直线4x+3y-2p=0与抛物线y2=2px且消去x得:2y2+3py-2p2=0
解得:y1=$\frac{p}{2}$,y2=-2p,所以x1=$\frac{p}{8}$,x2=2p
所以$\frac{|AC|}{|BD|}$=$\frac{\frac{9}{8}p}{3p}$=$\frac{3}{8}$.
故答案为$\frac{3}{8}$.
点评 解决此类题目的关键是对抛物线的定义要熟悉,即抛物线上的点到定点的距离与到定直线的距离相等.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{2}$ | B. | $\sqrt{10}$ | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=e-x-ex | B. | y=tanx | C. | y=x-3|x| | D. | y=ln(x+2)-ln(2-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {7} | B. | {5,7} | C. | {3,5,7} | D. | {x|6<x≤7} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}+\frac{y^2}{4}=1$ | C. | $\frac{y^2}{4}+\frac{x^2}{2}=1$ | D. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{7}{8}$ | C. | $\frac{9}{8}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com