精英家教网 > 高中数学 > 题目详情
8.已知实数p>0,直线4x+3y-2p=0与抛物线y2=2px和圆(x-$\frac{p}{2}$)2+y2=$\frac{{p}^{2}}{4}$从上到下的交点依次为A,B,C,D,则$\frac{|AC|}{|BD|}$的值为$\frac{3}{8}$.

分析 设A(x1,y1),D(x2,y2),抛物线的焦点为F,由题得|BF|=|CF|=$\frac{p}{2}$.由抛物线的定义得:|AC|=|AF|+|CF|=$\frac{p}{2}$+x1+$\frac{p}{2}$=x1+p,同理得|BD|=x2+p.联立直线4x+3y-2p=0与抛物线y2=2px且消去x解出y1=$\frac{p}{2}$,y2=-2p,所以x1=$\frac{p}{8}$,x2=2p,进而得到答案.

解答 解:设A(x1,y1),D(x2,y2),抛物线的焦点为F,
由题意得|BF|=|CF|=$\frac{p}{2}$,
由抛物线的定义得:|AC|=|AF|+|CF|=$\frac{p}{2}$+x1+$\frac{p}{2}$=x1+p,同理得|BD|=x2+p.
联立直线4x+3y-2p=0与抛物线y2=2px且消去x得:2y2+3py-2p2=0
解得:y1=$\frac{p}{2}$,y2=-2p,所以x1=$\frac{p}{8}$,x2=2p
所以$\frac{|AC|}{|BD|}$=$\frac{\frac{9}{8}p}{3p}$=$\frac{3}{8}$.
故答案为$\frac{3}{8}$.

点评 解决此类题目的关键是对抛物线的定义要熟悉,即抛物线上的点到定点的距离与到定直线的距离相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)计算:${(-\frac{1}{2})^{-2}}-|{-1+\sqrt{3}}|+2sin{60^0}+{(π-4)^0}$
(2)解方程或方程组:①$\left\{\begin{array}{l}2x+y=0\\ 3x-2y=7\end{array}\right.$②${m^2}+(5\sqrt{3}tan{30^o})m-12cos{60^o}=0$
(3)解不等式组
求不等式组$\left\{\begin{array}{l}x-1≥1-x\\ x+8>4x-1.\end{array}\right.$的整数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆的焦点是F1(-1,0)和F2(1,0),离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ x-y≤3\\ x+2y≤6\end{array}\right.$,则(x+1)2+y2的最小值为(  )
A.$2\sqrt{2}$B.$\sqrt{10}$C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一奶制品加工厂以牛奶为原料分别在甲、乙两类设备上加工生产A、B两种奶制品,如用甲类设备加工一桶牛奶,需耗电12千瓦时,可得3千克A制品;如用乙类设备加工一桶牛奶,需耗电8千瓦时,可得4千克B制品.根据市场需求,生产的A、B两种奶制品能全部售出,每千克A获利a元,每千克B获利b元.现在加工厂每天最多能得到50桶牛奶,每天两类设备工作耗电的总和不得超过480千瓦时,并且甲类设备每天至多能加工102千克A制品,乙类设备的加工能力没有限制.其生产方案是:每天用x桶牛奶生产A制品,用y桶牛奶生产B制品(为了使问题研究简化,x,y可以不为整数).
(Ⅰ)若a=24,b=16,试为工厂制定一个最佳生产方案(记此最佳生产方案为F0),即x,y分别为何值时,使工厂每天的获利最大,并求出该最大值;
(Ⅱ) 随着季节的变换和市场的变化,以及对原配方的改进,市场价格也发生变化,获利也随市场波动.若a=24(1+4λ),b=16(1+5λ-5λ2)(这里0<λ<1),其它条件不变,试求λ的取值范围,使工厂当且仅当采取(Ⅰ)中的生产方案F0时当天获利才能最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面函数中在定义域内是奇函数和单调增函数的是(  )
A.y=e-x-exB.y=tanxC.y=x-3|x|D.y=ln(x+2)-ln(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={1,3,5,7},Q={x|2x-1>11},则P∩Q等于(  )
A.{7}B.{5,7}C.{3,5,7}D.{x|6<x≤7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.中心在原点,焦点坐标为$(±\sqrt{2},0)$的椭圆被直线y=x+1截得的弦中点横坐标为$-\frac{2}{3}$,则椭圆方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{8}+\frac{y^2}{4}=1$C.$\frac{y^2}{4}+\frac{x^2}{2}=1$D.$\frac{x^2}{4}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正实数a,b满足a+b=3,则$\frac{1}{1+a}+\frac{4}{4+b}$的最小值为(  )
A.1B.$\frac{7}{8}$C.$\frac{9}{8}$D.2

查看答案和解析>>

同步练习册答案