【题目】已知椭圆的离心率为,左、右焦点分别为、,为椭圆上异于长轴端点的点,且的最大面积为.
(1)求椭圆的标准方程
(2)若直线是过点点的直线,且与椭圆交于不同的点、,是否存在直线使得点、到直线,的距离、,满足恒成立,若存在,求的值,若不存在,说明理由.
【答案】(1);(2)存在,且.
【解析】
(1)根据题意列出有关、、的方程组,求出这三个量的值,即可得出椭圆的标准方程;
(2)设直线的方程为,设点、,将直线的方程与椭圆方程联立,并列出韦达定理,由,得出,通过化简计算并代入韦达定理计算出的值,即可得出直线的方程,即可说明直线的存在性.
(1)设椭圆的焦距为,且的最大面积为,则,
由已知条件得,解得,因此,椭圆的标准方程为;
(2)当直线不与轴重合时,设直线的方程为,设点、,
将直线的方程与椭圆方程联立,消去并整理得,
,
由韦达定理得,.
,即,即,
整理得;
当直线与轴重合时,则直线与椭圆的交点为左、右顶点,设点、,
,,由,得,解得.
综上所述,存在直线,使得.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系.己知直线的直角坐标方程为,曲线C的极坐标方程为.
(1)设t为参数,若,求直线的参数方程和曲线C的直角坐标方程;
(2)已知:直线与曲线C交于A,B两点,设,且,,依次成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某部门参加职业技能测试的2000名员工中抽取100名员工,将其成绩(满分100分)按照[50,60),[60,70),[70,80),[80,90),[90,100)分成5组,得到如图所示的频率分布直方图.
(1)估计该部门参加测试员工的成绩的众数中位数;
(2)估计该部门参加测试员工的平均成绩;
(3)若成绩在80分及以上为优秀,请估计该部门2000名员工中成绩达到优秀的人数为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.
(1)求AD的长;
(2)求△CBD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数.
(1)求常数的值;
(2)判断并用定义法证明函数的单调性;
(3)函数的图象由函数的图象先向右平移个单位,再向上平移个单位得到,写出的一个对称中心,若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com