精英家教网 > 高中数学 > 题目详情
12.设等比数列的前n项和为Sn,积为Pn,倒数的和为Tn,求证:Pn2=($\frac{{S}_{n}}{{T}_{n}}$)n

分析 分公比为是否为1两种情况讨论,利用等比数列的通项与求和公式,计算即得结论.

解答 证明:设等比数列{an}的公比为q,则:
①当q=1时,Sn=na1,Tn=$\frac{n}{{a}_{1}}$,Pn=a1n=${{a}_{1}}^{n}$,
∴Pn2=${{a}_{1}}^{2n}$=$(\frac{n{a}_{1}}{\frac{n}{{a}_{1}}})^{n}$=($\frac{{S}_{n}}{{T}_{n}}$)n
②当q≠1时,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,Tn=$\frac{q({q}^{n}-1)}{{a}_{1}{q}^{n}(q-1)}$,
∴$\frac{{S}_{n}}{{T}_{n}}$=${{a}_{1}}^{2}{q}^{n-1}$,
又∵Pn=a1a2…an
=(a1n•q1+2+…+(n-1)
=${{a}_{1}}^{n}{q}^{\frac{n(n-1)}{2}}$,
∴Pn2=a2nqn(n-1)=($\frac{{S}_{n}}{{T}_{n}}$)n
综上所述,Pn2=($\frac{{S}_{n}}{{T}_{n}}$)n

点评 本题考查等比数列的通项与求和公式,考查学生的计算能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.四面体SABC,SA,SB,SC两两垂直,AB=4,BC=5,AC=6,SA与BC间的距离为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x,y为正实数,且(x+y)(x-2y)=1,则2x+y的最小值为$\frac{2\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算:tan10°tan20°+tan10°tan60°+tan60°tan20°=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y+x≤4}\\{y+2x≤s}\end{array}\right.$下,当2≤s≤8时,目标函数z=3x+2y的最大值的变化范围是(  )
A.[3,12]B.[4,12]C.[3,8]D.[6,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,若a1=1,an+1=3an+3n,(n≥1),则该数列的通项公式an=(  )
A.n•3nB.n•3n-1C.3nD.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且a2an=S1+Sn对一切正整数n都成立.
(1)求a1,a2的值;
(2)若数列{$\frac{{a}_{1}}{(n+2)lo{g}_{2}{a}_{n+1}}$}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.试求函数f(x)=sin(2x-$\frac{π}{2}$)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=1,求证:a+2b+3c≥9.

查看答案和解析>>

同步练习册答案