精英家教网 > 高中数学 > 题目详情
18.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y+1}{x}$的最大值为7.

分析 由题意画出可行域,由z=$\frac{y+1}{x}$的几何意义,即可行域内动点(x,y)与定点(0,-1)连线的斜率得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$作出可行域如图,

z=$\frac{y+1}{x}$的几何意义为可行域内动点(x,y)与定点(0,-1)连线的斜率,
联立$\left\{\begin{array}{l}{x-y+1=0}\\{2x+y-2=0}\end{array}\right.$,解得B($\frac{1}{3},\frac{4}{3}$),
${k}_{PB}=\frac{\frac{4}{3}+1}{\frac{1}{3}}=7$.
∴z=$\frac{y+1}{x}$的最大值为7.
故答案为:7.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.把6名实习生分配到7个车间实习,共有多少种不同的分法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知y=f(x)为偶函数,若f(1)=2,则f(-1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}、{bn}是正项数列,{an}为等差数列,{bn}为等比数列,{bn}的前n项和为Sn(n∈N*),且a1=b1=1,a2=b2+1,a3=b3-2.
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{{b}_{n+1}}{{S}_{n}•{S}_{n+1}}$,求数列{cn}的前n项和Sn
(3)设dn=$\frac{{{a}_{n}}^{2}}{{b}_{n+1}}$,若dn≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{OA}$=(2,-2,3),向量$\overrightarrow{OB}$=(x,1-y,4z),且平行四边形OACB对角线的中点坐标为(0,$\frac{3}{2}$,-$\frac{1}{2}$),则(x,y,z)等于(  )
A.(-2,-4,-1)B.(-2,-4,1)C.(-2,4,-1)D.(2,-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a5=4,a9=10,则a13=(  )
A.25B.16C.14D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(cos($\frac{π}{2}$+x),sin2x),b=(sin(π+x),$\frac{\sqrt{3}}{2}$).x∈[$\frac{π}{4}$,$\frac{π}{2}$].设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{1}{2}$.
(1)求函数f(x)的单调递增区间:
(2)求函数f(x)的最大值和最小值.并求此时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}的前n项和Sn=n(n+1),则它的第n项an是(  )
A.nB.n(n+1)C.2nD.2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列不等式组:
(1)$\left\{\begin{array}{l}{2x>1}\\{-3x<2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{-5x-1≥0}\\{4x+2<0}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{1}{2}x>x+1}\\{3x+6≥x-1}\end{array}\right.$
(4)$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{3}x≤1}\\{x-\frac{1}{5}x>2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案