精英家教网 > 高中数学 > 题目详情

三角形ABC中,内角A、B、C所对的边a、b、c成公比小于1的等比数列,且.(1)求内角B的余弦值;(2)若,求三角形的面积.

(1);(2).

解析试题分析:(1) 首先应考虑将的角换掉一个,那么换掉哪一个?比较一下,可知只有换掉角B可使式子简化.换掉角B之后用公式化简可得.接下来又怎么办?我们的目的是求,而,故应将转化为边的关系.由
又因为a、b、c成公比小于1的等比数列,所以,这样将代入便可得.(2)由.
再求出,用面积公式得.
试题解析:(1)
              2分
                                                           4分
又因为 
所以                                          6分
(2)                            8分
又因为                            10分
所以                             12分
考点:1、三角变换;2、正弦定理与余弦定理;3、三角形的面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,且
(1)求角的大小;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C的对边分别为a,b,c,且a2=b2+c2+bc.
(1)求A;
(2)设a=,S为△ABC的面积,求S+3cos Bcos C的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a、b、c分别是角A、B、C所对的边,且a=c+bcosC.
(1)求角B的大小;
(2)若S△ABC=,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A,B,C为三个内角,a,b,c为三条边,<C<=.
(1)判断△ABC的形状.
(2)若|+|=2,求·的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,已知
(1)求证:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为
(1)求的值;
(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC三个内角A,B,C的对边,的等差中项.
(1)求A;
(2)若a=2,△ABC的面积为,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC对应的边分别是abc.已知cos 2A-3cos(BC)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5b=5,求sin Bsin C的值.

查看答案和解析>>

同步练习册答案