精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-aex(a∈R),x∈R.已知函数y=f(x)有两个不同的零点,则a的取值范围是(  )
A、(0,e-1
B、[0,e-1
C、(-∞,e-1
D、(-∞,0)
考点:函数零点的判定定理
专题:计算题,函数的性质及应用,导数的概念及应用
分析:对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;
解答: 解:∵f(x)=x-aex,∴f′(x)=1-aex
下面分两种情况讨论:
①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;
②a>0时,由f′(x)=0,得x=-lna,当x变化时,f′(x)、f(x)的变化情况如下表:
x(-∞,-lna)-lna(-lna,+∞)
f′(x)+0-
f(x)递增极大值-lna-1递减
∴f(x)的单调增区间是(-∞,-lna),减区间是(-lna,+∞);
∴函数y=f(x)有两个零点等价于如下条件同时成立:
(i)f(-lna)>0,(ii)存在s1∈(-∞,-lna),满足f(s1)<0,(iii)存在s2∈(-lna,+∞),满足f(s2)<0;
由f(-lna)>0,即-lna-1>0,解得0<a<e-1
取s1=0,满足s1∈(-∞,-lna),且f(s1)=-a<0,
取s2=
2
a
+ln
2
a
,满足s2∈(-lna,+∞),且f(s2)=(
2
a
-e
2
a
)+(ln
2
a
-e
2
a
)<0;
∴a的取值范围是(0,e-1).
故选A.
点评:本题考查了导数的运算以及利用导数研究函数的单调性与零点问题,也考查了函数思想、化归思想和分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)-cos2x+a(a∈R,a为常数),求f(x)的最小正周期和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项为正数的等比数列{an}中,a2=2,a3•a5=64.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,⊙O的两条切线PA和PB相交于点P,与⊙O相切于A,B两点,C是⊙O上的一点,若∠P=70°,则∠ACB=
 
.(用角度表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,且抛物线的焦点到双曲线渐近线的距离为4,则双曲线的离心率为(  )
A、
3
B、
5
C、
5
3
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:2x-y+1=0,l2:ax+y+2=0,点P(3,1).
(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;
(Ⅱ)若直线l1与直线l2平行,求a的值;
(Ⅲ)点P到直线l2距离为3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|y|≤x表示的平面区域为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2f(x)的图象如图所示,则函数f(x)的单调递增区间为(  )
A、(-∞,0)和(2,+∞)
B、(0,2)
C、(-∞,0)∪(2,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,按如下程序框图,若判断框内的条件为i≥9,则输出的结果为
 

查看答案和解析>>

同步练习册答案