精英家教网 > 高中数学 > 题目详情

【题目】三国时期吴国数学家赵爽所注《周牌算经》中给出了勾股定理的绝妙证明.右面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实黄实,利用(股勾)朱实黄实弦实,化简,得勾,设勾股中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据

A.B.C.D.

【答案】B

【解析】

根据题意,设最短边勾的长为,进而表示出股和弦,求得小正方形与大正方形的面积比,结合几何概型概率求法即可得解.

根据题意,可设最短边勾的长为

则股为,弦为

所以大正方形的面积为

小正方形的面积为

则小正方形与大正方形的面积比为

由几何概型概率计算方法可得

所以落在黄色图形内的图钉颗数大约为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点,的坐标分别为,,直线,相交于点,且它们的斜率之积为-2,设点的轨迹是曲线.

1)求曲线的方程;

2)已知直线与曲线相交于不同两点(均不在坐标轴上的点),设曲线轴的正半轴交于点,若,垂足为,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程

已知曲线的极坐标方程为,曲线的参数方程为为参数),曲线的参数方程为为参数).

(Ⅰ)若曲线无公共点,求正实数的取值范围;

(Ⅱ)若曲线的参数方程中,,且曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.诗中隐含着一个有趣的数学问题——“将军饮马,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系中,设军营所在平面区域为,河岸线所在直线方程为.假定将军从点处出发,只要到达军营所在区域即回到军营,则将军可以选择最短路程为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AB=3BC=3,沿对角线BD将△BCD折起,使点C移到C′点,且C′点在平面ABD上的射影O恰在AB上.

(1)求证:BC′⊥平面ACD

(2)求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生09之间取整数值的随机数,指定2468表示命中十环,013579表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:

321 421 292 925 274 632 800 478 598 663 531 297 396

021 506 318 230 113 507 965

据此估计,小张三次射击恰有两次命中十环的概率为()

A. 0.25B. 0.30C. 0.35D. 0.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

1)求证:直线恒过定点;

2)判断直线被圆截得的弦长何时最长,何时最短?并求截得的弦长最短时,求的值以及最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,拋物线的顶点在坐标原点,焦点在轴负半轴上,过点作直线与拋物线相交于两点,且满足.

1)求直线和拋物线的方程;

2)当拋物线上一动点从点运动到点时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于两点,直线与曲线相交于两点,当变化时,求面积的最大值.

查看答案和解析>>

同步练习册答案