精英家教网 > 高中数学 > 题目详情
5.A是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,O为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

分析 当|AF|=4时,∠OFA=120°,结合抛物线的定义可求得p,进而根据抛物线的性质求得抛物线的准线方程.

解答 解:由题意∠BFA=∠OFA-90°=30°,
过A作准线的垂线AC,过F作AC的垂线,垂足分别为C,B.如图,
A点到准线的距离为:d=|AB|+|BC|=p+2=4,
解得p=2,
则抛物线的准线方程是x=-1.
故选A.

点评 本题主要考查了直线与抛物线的关系,当涉及抛物线的焦点弦的问题时,常利用抛物线的定义来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=lnx+3x-7的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA的中点.
(1)求证:PC∥平面BDE
(2)求三棱锥P-CED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈R,x03-x02+1>0”的否定是(  )
A.?x0∈R,x03-x02+1<0B.?x∈R,x3-x2+1≤0
C.?x0∈R,x03-x02+1≤0D.?x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为(  )
A.1B.2C.3D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\int_0^π$(1+cosx)dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=sinxcosx+sin2x-$\frac{1}{2}$.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)把y=f(x)的图象向左平移$\frac{π}{24}$个单位,得到函数y=g(x)的图象,求y=g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在等腰梯形CDEF中,DE=CD=$\sqrt{2}$,EF=2+$\sqrt{2}$,将它沿着两条高AD,CB折叠成如图(2)所示的四棱锥E-ABCD(E,F重合).
(1)求证:BE⊥DE;
(2)设点M为线段AB的中点,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

同步练习册答案