精英家教网 > 高中数学 > 题目详情

【题目】已知点为圆上一点,轴于点轴于点,点满足为坐标原点),点的轨迹为曲线.

)求的方程;

)斜率为的直线交曲线于不同的两点,是否存在定点,使得直线的斜率之和恒为0.若存在,则求出点的坐标;若不存在,则请说明理由.

【答案】,()存在,

【解析】

)设,由表示,然后将代入,化简即可得到结果;

)假设存在定点满足题意,设,斜率为的直线的方程为,联立直线与椭圆方程,利用韦达定理和斜率和为0恒成立,可得结果.

)设

所以,所以

在圆上,

所以,即.

)假设存在定点满足题意,设,斜率为的直线的方程为

,得,,

所以,解得

因为

所以

所以对任意的恒成立,

所以,解得

所以存在定点,使得的斜率之和恒为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某品牌饮料的某种食品添加剂是否超标,现对该品牌下的两种饮料一种是碳酸饮料含二氧化碳,另一种是果汁饮料不含二氧化碳进行检测,现随机抽取了碳酸饮料、果汁饮料各10均是组成的一个样本,进行了检测,得到了如下茎叶图根据国家食品安全规定当该种添加剂的指标大于毫克为偏高,反之即为正常.

1)依据上述样本数据,完成下列列联表,并判断能否在犯错误的概率不超过的前提下认为食品添加剂是否偏高与是否含二氧化碳有关系?

正常

偏高

合计

碳酸饮料

果汁饮料

合计

2)现从食品添加剂偏高的样本中随机抽取2瓶饮料去做其它检测,求这两种饮料都被抽到的概率.

参考公式:,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四本不同的书分给三位同学,每人至少分到一本,每本书都必须有人分到,不能同时分给同一个人,则不同的分配方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值

1)求的解析式;

2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )

A. 600B. 812C. 1200D. 1632

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的不恒为零的函数,对于任意实数满足: ,, 考查下列结论:① ;②为奇函数;③数列为等差数列;④数列为等比数列.

以上结论正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,-2)的直线被圆x2y22x2y10截得的弦长为,则直线的斜率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考方案的实施,学生对物理学科的选择成了焦点话题. 某学校为了了解该校学生的物理成绩,从,两个班分别随机调查了40名学生,根据学生的某次物理成绩,得到班学生物理成绩的频率分布直方图和班学生物理成绩的频数分布条形图.

(Ⅰ)估计班学生物理成绩的众数、中位数(精确到)、平均数(各组区间内的数据以该组区间的中点值为代表);

(Ⅱ)填写列联表,并判断是否有的把握认为物理成绩与班级有关?

物理成绩的学生数

物理成绩的学生数

合计

合计

附:列联表随机变量

查看答案和解析>>

同步练习册答案