精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)若a、b是任意实数,且a>b,则下列不等式成立的是(  )
分析:由题意a、b是任意实数,且a>b,可通过举特例与证明的方法对四个选项逐一判断得出正确选项,A,B,C可通过特例排除,D可参考函数y=(
1
3
)
x
是一个减函数,利用单调性证明出结论.
解答:解:由题意a、b是任意实数,且a>b,
由于0>a>b时,有a2<b2成立,故A不对;
由于当a=0时,
b
a
<1
无意义,故B不对;
由于0<a-b<1是存在的,故lg(a-b)>0不一定成立,所以C不对;
由于函数y=(
1
3
)
x
是一个减函数,当a>b时一定有(
1
3
)
a
(
1
3
)
b
成立,故D正确.
综上,D选项是正确选项
故选D
点评:本题考查不等关系与不等式,考查了不等式的判断与大小比较的方法--特例法与单调性法,解题的关键是理解比较大小常用的手段举特例与单调性法,及中间量法等常用的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案