精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,若对任意的x1,x2∈[-1,2],恒有af(1)≥|f(x1)-f(x2)|成立,则实数a的取值范围是[e2,+∞).

分析 求出f(x)的导数,求得在区间[-1,2]上的单调性,可得最值,即有|f(x1)-f(x2)|≤f(x)max-f(x)min=e,由恒成立思想,可得a的不等式,解不等式即可得到a的范围.

解答 解:函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$的导数为f′(x)=$\frac{x(2-x)}{{e}^{x}}$,
当-1≤x≤0时,f′(x)≤0,f(x)递减;
当0<x≤2时,f′(x)>0,f(x)递增.
则f(0)取得极小值,且为最小值0,
f(-1)-f(2)=$\frac{1}{{e}^{-1}}$-$\frac{4}{{e}^{2}}$=e-$\frac{4}{{e}^{2}}$>0,
则f(x)的最大值为f(-1)=e,
即有|f(x1)-f(x2)|≤f(x)max-f(x)min=e,
对任意的x1,x2∈[-1,2],恒有af(1)≥|f(x1)-f(x2)|成立,
即为a•$\frac{1}{e}$≥e,
解得a≥e2
则a的取值范围是[e2,+∞).
故答案为:[e2,+∞).

点评 本题考查函数恒成立问题的解法,考查导数的运用:求单调性和极值、最值,考查转化思想,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知直线l过点P(-1,2),且倾斜角的余弦值为$\frac{\sqrt{2}}{2}$.
(1)求直线l的一般式方程;
(2)求直线l与坐标轴围成的三角形绕y轴在空间旋转成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为${F_1},{F_2},{a^2}+{b^2}=4$,短轴端点B与两焦点F1,F2构成的三角形面积最大时,椭圆的短半轴长为(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方棱台(上、下底面均为矩形的棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之,亦倍下袤,上袤从之,各以其广乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘,将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘,把这两个数值相加,与高相乘,再取其六分之一,依此算法,现有上、下底面为相似矩形的棱台,相似比为$\frac{1}{2}$,高为3,其上底面的周长为6,则该棱台的体积的最大值为(  )
A.14B.56C.$\frac{63}{4}$D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a+b,$\sqrt{3}$a-c),$\overrightarrow{n}$=(sinC,sinA-sinB),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角B的大小
(2)若A=$\frac{π}{6}$,角B的平分线与AC边交于点D,且BD=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将函数f(x)=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位,所得图象关于原点对称,则φ的最小值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-2≥0\\ x+2y-4≤0\end{array}\right.$,则x2+y2的最小值为(  )
A.0B.$\frac{4}{5}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}中,已知a5+a10=12,则3a7+a9等于(  )
A.30B.24C.18D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),则$\frac{1}{2}$$\overrightarrow{a}$$-\frac{3}{2}$$\overrightarrow{b}$=(-1,2).

查看答案和解析>>

同步练习册答案