精英家教网 > 高中数学 > 题目详情
18.设数列{an}满足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.
(1)求a2,a3,a4
(2)由( 1)猜想an的一个通项公式,并用数学归纳法证明你的结论.

分析 (1)根据已知中数列{an}满足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.令n=1,2,3可得a2,a3,a4
(2)由( 1)猜想an=n+1,利用数学归纳法可证得结论.

解答 解:(1)∵数列{an}满足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.
∴${a}_{2}={a}_{1}^{2}-{a}_{1}+1$=3;
${a}_{3}={a}_{2}^{2}-2{a}_{2}+1$=4;
${a}_{4}={a}_{3}^{2}-3{a}_{3}+1$=5;
(2)由( 1)猜想an=n+1,用数学归纳法证明如下:
当n=1时,左边=a2=3,
右边=${a}_{1}^{2}-{a}_{1}+1$=22-2+1=3,
满足条件;
假设n=k时,满足条件,则${a}_{k+1}={a}_{k}^{2}-k{a}_{k}+1$,
即k+2=(k+1)2-k(k+1)+1,
则n=k+1时,左边=(k+1)+2=k+3,
右边=(k+2)2-(k+1)(k+2)+1=k+2+1=k+3,满足条件,
综上an=n+1满足条件.

点评 本题考查的知识点是归纳推理,数学归纳法,数列通项公式的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,BC⊥平面PAB,PA⊥AB,M为PB中点,PA=AD=2,AB=1.
(1)求证:PD∥面ACM;
(2)求VD-PMC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知正三棱锥V-ABC,底面积为16$\sqrt{3}$,一条侧棱长为2$\sqrt{6}$,计算它的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的多面体PMBCA中,平面PAC⊥平面ABC,△PAC是边长为2的正三角形,PM∥BC,且BC=4,$AB=2\sqrt{5}$.
(1)求证:PA⊥BC;
(2)若多面体PMBCA的体积为$2\sqrt{3}$,求PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正△ABC内一点D,满足∠ADC=150°.证明:由线段AD、BD、CD为边构成的三角形是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(文) 已知数列{an}的前n项和为Sn,且an=$\frac{1}{(n+1)(n+2)}$,则S2015=$\frac{2015}{4034}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是②④(写出所有正确命题的编号).
①当0<CQ<$\frac{1}{2}$时,S为平行四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{4}$
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=x3+$\sqrt{x}$在点(1,2)处的切线方程为(  )
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)是双曲线$\frac{{x}^{2}}{4}-{y}^{2}$=1上任意一点,F1是双曲线的左焦点,O是坐标原点,则$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最小值是4-2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案