精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,设动点.

(1)当时,若过点的直线与圆相切,求直线的方程;

(2)当时,求以为直径且被直线截得的弦长为2的圆的方程;

(3)当时,设,过点的垂线,与以为直径的圆交于点,垂足为,试问:线段的长是否为定值?若为定值,求出这个定值;若不为定值,请说明理由.

【答案】(1)(2)(3)的长为定值为.

【解析】试题分析: (1)圆C:x2+y2﹣8x=0化为(x﹣4)2+y2=16,得到圆心C(4,0),半径r=4,分类讨论即可求直线l的方程;

(2)设出以OM为直径的圆的方程,变为标准方程后找出圆心坐标和圆的半径,由以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长,过圆心作弦的垂线,根据垂径定理得到垂足为中点,由弦的一半,半径以及圆心到直线的距离即弦心距构成直角三角形,利用点到直线的距离公式表示出圆心到3x﹣4y﹣5=0的距离d,根据勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出所求圆的方程;

(3)由于,∴直线的方程为,求出把前面得到的关系式代入即可求出线段ON的长,从而得到线段ON的长为定值.

试题解析:

(1)解:依题意

将圆化为标准方程为:

则圆心,半径为

∵直线过点

∴当斜率不存在时,直线的方程为,符合题意;

当斜率存在时,设过点的直线的方程为,即.

∵直线与圆相切,

∴圆心到直线的距离为4,

,解得

,即

综上可得,所求直线的方程为.

(2)依题意得,),

∴以为直径的圆圆心为,半径为

∴圆的方程为

∵以为直径的圆被直线截得的弦长为2,

∴圆心到直线的距离为

,解得.

∴圆心为,半径为

∴所求圆的方程为.

(3)的长为定值.

理由如下:

依题意得

由于

,即

∵直线的方程为,即

∴由点到直线的距离公式得

又由两点间的距离公式得

的长为定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设 ,向量 =(cosα,sinα),
(1)证明:向量 垂直;
(2)当| |=| |时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若曲线与曲线在它们的交点处具有公共切线,求 的值;

(Ⅱ)当时,若函数在区间内恰有两个零点,求的取值范围;

(Ⅲ)当时,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形纸片ABCD中,AB10cm,BC8cm.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC 等分,每个小矩形按图(1)分割并把个小扇形焊接成一个大扇形.当n时,最后拼成的大扇形的圆心角的大小为 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥的底面圆心为,直径为 为半圆弧的中点, 为劣弧的中点,且

(1)求异面直线所成的角的大小;

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面底面平分的中点,分别为上一点,且.

(1)若,证明:平面.

(2)过点作平面的垂线,垂足为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中, 为底面的对角线, 的中点.

(1)求证:

(2)求证: 平面.

查看答案和解析>>

同步练习册答案