精英家教网 > 高中数学 > 题目详情

【题目】已知数列,前n项和为,对任意的正整数n,都有恒成立.

1)求数列的通项公式;

2)已知关于n的不等式对一切恒成立,求实数a的取值范围;

3)已知 ,数列的前n项和为,试比较的大小并证明.

【答案】1;(2;(3,证明见解析.

【解析】

1)利用数列的递推关系式化简,通过累积法转化求解数列的通项公式.

2)设,利用后一项与前一项的差的符号,判断数列的单调性即可.

3)通过放缩法,利用裂项消项法求解数列的和Tn=c1+c2+c3+…+cn然后推出结果.

1)由题意,因为2Sn=n+1an

n≥2时,2Sn-1=nan-1

两式相减2an=n+1an-nan-1,可得(n-1an=nan-1n≥2),

a1=1≠0,则an≠0,所以

可得

累乘得n≥2时,

n=1时,a1=1也满足上式,

所以数列的通项公式为an=n

2)设

=

=

所以fn)在n≥3nN*上单调递减,

所以,即

3

Tn=c1+c2+c3+…+cn

=

=

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】滨海市政府今年加大了招商引资的力度,吸引外资的数量明显增加.一外商计划在滨海市投资两个项目,总投资20亿元,其中甲项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,乙项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,并且每个项目至少要投资2亿元.设两个项目的10年收益额之和为.

(1)求

(2)如何安排甲、乙两个项目的投资额,才能使这两个项目的10年收益额之和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,解关于x的不等式

2)若不等式对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 某厂一批产品的次品率为 ,则任意抽取其中10件产品一定会发现一件次品

B. 掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5

C. 某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈

D. 气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点

(1)求的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上一点,分别为关于轴,原点,轴的对称点,

1)求四边形面积的最大值;

2)当四边形最大时,在线段上任取一点,若过的直线与椭圆相交于两点,且中点恰为,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

同步练习册答案