精英家教网 > 高中数学 > 题目详情

【题目】如图四棱锥的底面为菱形,且 .

(Ⅰ)求证:平面平面

(Ⅱ)二面角的余弦值.

【答案】(1)见解析;(2).

【解析】试题分析:(1)取中点,连结 ,依题意,可证平面,从而可证得平面平面;(2)由(1)两两互相垂直,如图建立空间直角坐标系,可求得各点坐标,求出面的法向量为,面的一个法向量为,求出向量的夹角即可.

试题解析:(1)证明:取中点,连结 ,由 ,知为等腰直角三角形,

,由 ,知为边三角形,

,又 平面

平面,又平面 平面平面.

(2)由(1)两两互相垂直,如图建立空间直角坐标系,则

,设平面的法向量为,则,取

,又平面的一个法向量为

设二面角的大小为

易知其为锐角,

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2 ﹣sin cos
(1)求函数f(x)的最小正周期和值域;
(2)若 ,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=2cosxsin(x+ )﹣ 的图象,只需将y=sinx的图象(
A.先向左平移 个单位长度,再将所有点的横坐标缩短为原来的 倍(纵坐标不变)
B.先向左平移 个单位长度,再将所有点的横坐标缩短为原来的2倍(纵坐标不变)
C.先将所有点的横坐标缩短为原来的2倍(纵坐标不变),再向左平移 个单位长度
D.先将所有点的横坐标缩短为原来的 倍(纵坐标不变),再向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在棱柱的面底是菱形,且面ABCD,

为棱的中点,M为线段的中点.

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sin(2x+ )的图象向右平移 个单位,再把所得图象上各点的横坐标缩短到原来的 ,则所得图象的函数解析式是(
A.y=sin(4x+ π)
B.y=sin(4x+
C.y=sin4x
D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)写出曲线的直角坐标方程;

(2)已知点的直角坐标为,直线与曲线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为DD1、DB的中点.

(1)求证:EF⊥B1C;
(2)求三棱锥E﹣FCB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的选修情况,如表:

科目

学生人数

A

B

C

120

60

70

50

150

50

(Ⅰ)试估计该校高三学生在A、B、C三门选修课中同时选修2门课的概率.

(Ⅱ)若该高三某学生已选修A,则该学生同时选修B、C中哪门的可能性大?

查看答案和解析>>

同步练习册答案