精英家教网 > 高中数学 > 题目详情

【题目】某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.

(1)求第n年该设备的维修费的表达式;

(2)设,若万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?

【答案】(1) (2) 第9年

【解析】

(1)将数列分为两部分,分别利用等差数列和等比数列公式得到答案.

(2)当时,恒成立,当时,,判断是递增数列,计算,得到答案.

(1)当时,数列是首项为20,公差为4的等差数列,

时,数列是首项为,公比为的等比数列,又

所以.

因此第n年该设备的维修费的表达式因此为

(2)设数列的前项和为,由等差及等比的求和公式得:

时,

此时恒成立,即该设备继续使用;

时,

此时

因为,即

所以是递增数列,又,

故在第9年必须对该设备进行更新.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球

I)试问:一共有多少种不同的结果?请列出所有可能的结果;

)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求证:f(x)≥5;
(Ⅱ)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与双曲线的一个公共焦点,分别是在第二、四象限的公共点.若的离心率为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求证:f(x)≥5;
(Ⅱ)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)当m=-1时,求AB

(2)若AB,求实数m的取值范围;

(3)若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数及关于的不等式.

(1)若该不等式的解集为,求实数的值;

(2)若,求函数的最小值;

(3)若该不等式的解集中有且只两个整数,求实数的取值范围.

查看答案和解析>>

同步练习册答案