精英家教网 > 高中数学 > 题目详情
已知点A(1,0)及圆,C为圆B上任意一点,求AC垂直平分线与线段BC的交点P的轨迹方程。

试题分析:本题可以利用垂直平分线的性质,分析出,然后利用椭圆的定义即可得P的轨迹方程.
试题解析:连AP,垂直平分AC,
,即点P的轨迹是以A、B为焦点的椭圆,

点P的轨迹方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知是椭圆上不同的三点,在第三象限,线段的中点在直线上.

(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点)且直线PBPC分别交直线OA两点,证明为定值并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为,则________,
过点向其准线作垂线,记与抛物线的交点为,则_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆C: 的一个焦点为为椭圆C上一点,△MOF2的面积为.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线l,使得l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是任意实数,则方程所表示的曲线一定不是(    )
A.直线B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆交于点P,且点P在抛物线上,则e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

同步练习册答案