精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x的焦点为F,准线为l,l与双曲线
x2
a2
-y2=1(a>0)
交于A,B两点,若△FAB为直角三角形,则双曲线的离心率是(  )
A.
3
B.
6
C.2D.
2
+1
由抛物线y2=4x得:抛物线的准线方程为x=-1,抛物线的焦点F的坐标是(1,0).
x2
a2
-y2=1中的x=-1,得:
1
a2
-y2=1,
∴y2=
1
a2
-1
∴y=
1
a2
-1
,或y=-
1
a2
-1

∴A、B的坐标分别是(-1,-
1
a2
-1
)、(-1,
1
a2
-1
).
∴向量
FA
=(-2,-
1
a2
-1
),向量
FB
=(-2,
1
a2
-1
).
∵△FAB是Rt△,显然有:|
FA
|=|
FB
|,
FA
FB
=0,
∴4-(
1
a2
-1)=0
∴a2=
1
5

∴c2=
1
5
+1=
6
5

∴e2=
c2
a2
=6,
∴e=
6

∴双曲线的离心率是
6

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线9y2-16x2=144的渐近线方程为(  )
A.y=±
3
4
x
B.y=±
4
3
x
C.y=±
16
9
x
D.y=±
9
16
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线C与双曲线
x2
12
-
y2
8
=1
共渐近线,且过点A(3,
2
)
,则双曲线C的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,F为双曲线C:
x2
9
-
y2
16
=1
的左焦点,双曲线C上的点Pi与P7-i(i=1,2,3)关于y轴对称,则|P1F|+|P2F|+|P3F|-|P4F|-|P5F|-|P6F|的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点F2是⊙F1外的一点,点Q是⊙F1上的动点,射线F1Q交线段F2Q的中垂线于P,则点P一定在(  )
A.以F1、F2为焦点,以2|F1Q|为长轴长的椭圆上
B.以F1、F2为焦点,以2|F1Q|为实轴长的双曲线上
C.以F2为焦点,以F1F2中点为顶点的抛物线上
D.以F1、F2为焦点,以|F1Q|为实轴长的双曲线上

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2为双曲线C:
x2
16
-
y2
20
=1
的左、右焦点,P在双曲线上,且PF2=5,则cos∠PF1F2______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
4
-
y2
9
=-1的渐近线方程是(  )
A.y=
+-
2
3
x
B.y=
+-
4
9
x
C.y=
+-
3
2
x
D.y=
+-
9
4
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点P满足:①△PF1F2是以PF1为底边的等腰三角形;②直线PF1与圆x2+y2=
1
4
a2
相切,则此双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________.

查看答案和解析>>

同步练习册答案