精英家教网 > 高中数学 > 题目详情

已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[-2,2]时,f(x)=g(x).则当x∈[-4n-2,-4n+2]n∈Z时,f(x)的解析式为


  1. A.
    g(x)
  2. B.
    g(x+2n)
  3. C.
    g(x+4n)
  4. D.
    g(x-4n)
C
分析:由于f(x)和f(x+2)都是偶函数,即都关于y轴对称,可知f(x)既关于x=0对称还关于x=2对称,从而f(x)为周期函数T=4;
当-4n-2≤x≤-4n+2时,-2≤x+4n≤2,即f(x+4n)=g(x+4n)=f(x),所以可解.
解答:由于f(x)和f(x+2)都是偶函数,即都关于y轴对称,
又f(x+2)是由f(x)向左移动2个单位得到,
从而可知f(x)既关于x=0对称还关于x=2对称,
从而f(x)为周期函数T=4;
又设:-4n-2≤x≤-4n+2,则-2≤x+4n≤2,
又由已知,可得f(x+4n)=g(x+4n)=f(x),
故当-4n-2≤x≤-4n+2时f(x)解析式为g(x+4n),
故选C.
点评:本题考查函数奇偶性,平移及周期性的知识,三个考点,高考命题组规定函数的选择,填空题一般考查不超过三个考点.所以本题是一道不可多得的好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)+f(-x)=0;
(2)若f(-3)=a,试用a表示f(24);
(3)如果x∈R时,f(x)<0,且f(1)=-
12
,试求f(x)在区间[-2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;
(2)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<
1a
,证明:当x∈(0,p)时,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中a,b为常数,a1=0,b1=1.
(Ⅰ)a=1时,求数列{an}与{bn}的通项;
(Ⅱ)设a>0且a≠1,若数列{bn}是公比不为1的等比数列,求b的值;
(Ⅲ)若a>0,设{an}与{bn}的前n项和分别记为Sn与Tn,求(T1+T1+…+Tn)-(S1+S2+…+Sn)的值.

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

同步练习册答案