精英家教网 > 高中数学 > 题目详情

已知双曲线的两个焦点为,实半轴长与虚半轴长的乘积为.直线点且与线段的夹角为与线段垂直平分线的交点为,线段与双曲线的交点为,且,求双曲线方程.


解析:

从双曲线的对称性知,我们可以取以所在直线为轴,过中点且垂直于 的直线为轴建立直角坐标系如图所示,

       设双曲线方程为,用待定系数法求之值,又设

       从题设知道直线方程为

       即,在方程中令,得点坐标

       由定比分点坐标公式可得点坐标为

       在双曲线上,.       ①

       又,         ②   从题设有,     ③

       从式①,②消去,化简整理得

       解此方程得,或(舍去).

       .        ④

       由③,④得

       故所求双曲线方程为,从对称性知,双曲线也适合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为椭圆
x2
16
+
y2
7
=1
的长轴的端点,其准线过椭圆的焦点,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)
F2(
5
,0)
,P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点F1(-
10
,0),F2
10
,0),M是此双曲线上的一点,|
MF1
|-|
MF2
|=6,则双曲线的方程为
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步练习册答案