精英家教网 > 高中数学 > 题目详情
3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,则实数a=2.

分析 由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),利用当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,求出a即可.

解答 解:由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此时,直线2x-y+2=0与3x+y-3=0的交点坐标为($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
故答案为2.

点评 本题考查线性规划知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设复数z=2-i(i为虚数单位),则复数z2=3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx+$\frac{a}{x}$+x
(Ⅰ)在f(x)=lnx+$\frac{a}{x}$+x(0<x≤2)图象上任意一点P(x0,y0)处切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(Ⅱ)不等式f(x)≥a+1,对x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一块石材表示的几何体的三视图如图所示,则它的体积等于(  )
A.96B.192C.288D.576

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{2}}}{y^{-\frac{1}{6}}}})}}$;
(2)已知log53=a,log52=b,用a,b表示log2512.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则x2+y2的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和Sn=-2n2-n
(1)求通项an的表达式;
(2)说明{an}是一个怎样的等差数列;
(3)求a1+a3+a5+…+a25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于顶点在原点的抛物线,给出下列条件;
(1)焦点在y轴正半轴上;
(2)焦点在x轴正半轴上;
(3)抛物线上横坐标为1的点到焦点的距离等于6;
(4)抛物线的准线方程为$x=-\frac{5}{2}$
其中适合抛物线y2=10x的条件是(要求填写合适条件的序号)(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,a>0,b>0$的离心率e=2,左,右焦点分别为F1,F2,点P在双曲线的右支上,则$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值为3.

查看答案和解析>>

同步练习册答案