分析 由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),利用当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,求出a即可.
解答 解:由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此时,直线2x-y+2=0与3x+y-3=0的交点坐标为($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
故答案为2.
点评 本题考查线性规划知识,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com