精英家教网 > 高中数学 > 题目详情

【题目】为给定的不小于的正整数,考察个不同的正整数构成的集合,若集合的任何两个不同的非空子集所含元素的总和均不相等,则称集合差异集合

1)分别判断集合,集合是否是差异集合;(只需写出结论)

2)设集合差异集合,记,求证:数列的前项和

3)设集合差异集合,求的最大值.

【答案】(1)集合不是,集合是;(2)见解析;(3)最大值为

【解析】

1)利用定义直接判断

2)利用定义得,则

即可证明

3)不妨设,变形

结合 即可证明

(1)集合不是,因为,即子集与子集元素之和相等;

集合是,因为集合的任何两个不同的非空子集所含元素的总和均不相等.

2)由集合差异集合知:个非空子集元素和为互不相等的个正整数,

于是,所以

(3)不妨设,考虑

,所以

时,

综上,的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为定义在上的奇函数,当时,有,且当时,,下列命题正确的是( )

A.B.函数在定义域上是周期为的函数

C.直线与函数的图象有个交点D.函数的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价,现从评价系统中选出条较为详细的评价信息进行统计,车辆状况和优惠活动评价的列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对车辆状况好评

对车辆状况不满意

合计

(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?

(2)为了回馈用户,公司通过向用户随机派送每张的面额为元,元,元的三种骑行券,用户每次使用扫码用车后,都可获得一张骑行券,用户骑行一-次获得元券,获得元券的概率分别是,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

:下边的临界值表仅供参考:

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,讨论的单调性;

2)设函数,若存在不相等的实数,使得,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,已知对任意都成立,数列的前n项和为

1)若是等差数列,求k的值;

2)若,求

3)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于双曲线,定义为其伴随曲线,记双曲线的左、右顶点为

1)当时,记双曲线的半焦距为,其伴随椭圆的半焦距为,若,求双曲线的渐近线方程.

2)若双曲线的方程为,弦轴,记直线与直线的交点为,求其动点的轨迹方程.

3)过双曲线的左焦点,且斜率为的直线与双曲线交于两点,求证:对任意的,在伴随曲线上总存在点,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,正方形所在平面垂直于平面,四边形为平行四边形,上一点,且平面.

1)求证:平面平面

2)当三棱锥体积最大时,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是两个不同的平面,则下列命题中正确命题的序号是( )

①若直线平行于平面内的无数条直线,则直线∥平面.

②若直线∥平面,直线∥直线,则直线平行于平面内的无数条直线.

③若直线不平行,则不可能垂直于同一平面.

④若直线∥平面,平面平面,则直线平面

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为正三角形,为棱的中点,,平面平面

1)求证:平面平面

2)若是棱上一点,与平面所成角的正弦值为,求二面角的正弦值.

查看答案和解析>>

同步练习册答案