精英家教网 > 高中数学 > 题目详情
如图,一个三角形的绿地ABC,AB边的长为7m,由C点看AB的张角为45°,在AC边上一点D处看AB的张角为60°,且AD=2DC,试求这块绿地的面积.
考点:三角形中的几何计算
专题:解三角形
分析:设DC=x,在△BDC中,由正弦定理得BD,BC,在△ABC中,由余弦定理,求出DC,再求△ABC的面积.
解答: 解:设DC=x,在△BDC中,由正弦定理得:
BC=
xsin(180°-60°)
sin(60°-45°)
=
3
2
+
6
2
x…(4分)
在△ABC中,由余弦定理得:
72=(
3
2
+
6
2
x)2+(3x)2-2•3x•
3
2
+
6
2
x•cos45°=6x2
故x2=
49
6
…(8分)
于是,△ABC的面积S=
1
2
AC•BC•sin45°=
1
2
•3x•
3
2
+
6
2
x•
2
2
=
49
8
(3+
3
)
(平方米)…(11分)
答:这块绿地的面积为
49
8
(3+
3
)
平方米…(12分)
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项为3,数列{bn}为等差数列,且bn=an+1-an(n∈N*),若b2=-4,b9=10,则数列{an}的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,动点P到x轴的距离的平方恰比点P的横纵坐标的乘积小1.记动点P的轨迹为C,下列对于曲线C的描述正确的是
 

①曲线C关于原点对称;
②曲线C关于直线y=x对称;
③当变量|y|逐渐增大时,曲线C无限接近直线y=x;
④当变量|y|逐渐减小时,曲线C与x轴无限接近.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg(a-1)+lg(b-2)=lg2,则a+b的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的最小正周期为T,且在一个周期内的图象如图所示,
(1)求函数的解析式;
(2)若函数g(x)=f(mx)+1(m>0)的图象关于点M(
3
,0)对称,且在区间[0,
π
2
]上不是单调函数,求m的取值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-2在(2,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan2α+6tanα+7=0,tan2β+6tanβ+7=0,α,β∈(0,π)且α≠β,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1+sin2φ
cosφ+sinφ
=cosφ+sinφ

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈{-1,0,1,2},则函数f(x)=ax2+2x+b有零点的概率为   A(  )
A、
13
16
B、
7
8
C、
3
4
D、
5
8

查看答案和解析>>

同步练习册答案