【题目】若函数f(x)= 的定义域为R,则实数m的取值范围是 .
【答案】
【解析】解:由题意知mx2+4mx+3≠0对任意x∈R恒成立,(1)若m=0,则mx2+4mx+3=3≠0,符合题意.(2)若m≠0,则mx2+4mx+3≠0对任意x∈R恒成立,等价于 , 解得: ,
综上所述,实数m的取值范围是 .
所以答案是 .
【考点精析】关于本题考查的函数的定义域及其求法,需要了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx(其中常数a,b∈R),g(x)=f(x)﹣f′(x)是奇函数,
(1)求f(x)的表达式;
(2)求g(x)在[1,3]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 3 | 4 | 8 | 15 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 15 | x | 3 | 2 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 1 | 2 | 8 | 9 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 10 | 10 | y | 3 |
则x,y的值分别为( )
(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 (a>b>0)的右焦点F(1,0),离心率为 ,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.
(1)求椭圆的方程;
(2)证明:直线MN必过定点,并求出此定点坐标;
(3)若弦AB,CD的斜率均存在,求△FMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln x+ (a>0).
(1)求函数f(x)的极值;
(2)若对任意的x>0,恒有ax(2-ln x)≤1,求实数a的取值范围;
(3)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,试求出a的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com