【题目】已知抛物线的图象经过点.
(1)求抛物线的方程和焦点坐标;
(2)直线交抛物线于,不同两点,且,位于轴两侧,过点,分别作抛物线的两条切线交于点,直线,与轴的交点分别记作,.记的面积为,面积为,面积为,试问是否为定值,若是,请求出该定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,四个顶点恰好构成了一个边长为且面积为的菱形.
(1)求椭圆的标准方程;
(2)已知直线,过右焦点F2,且它们的斜率乘积为,设,分别与椭圆交于点,和,,的中点为,的中点为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线和点,过点作直线分别交于,两点,为线段的中点,为抛物线上的一个动点.
(1)当时,过点作直线交于另一点,为线段的中点,设,的纵坐标分别为,.求的最小值;
(2)证明:存在的值,使得恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,
(1)若甲、乙都以每分钟100的速度从点出发在各自的大道上奔走,乙比甲迟2分钟出发,当乙出发1分钟后到达,甲到达,求此时甲、乙两人之间的距离;
(2)甲、乙、丙所在位置分别记为点.设,乙、丙之间的距离是甲、乙之间距离的2倍,且,请将甲、乙之间的距离表示为的函数,并求甲、乙之间的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线焦点为,过点与轴垂直的直线交抛物线的弦长为2.
(1)求抛物线的方程;
(2)点和点为两定点,点和点为抛物线上的两动点,线段的中点在直线上,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).
(1)分别求,关于x的函数关系式;
(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,且n、、成等差数列,.
(1)证明数列是等比数列,并求数列的通项公式;
(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com