A. | 12 | B. | $6\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 6 |
分析 a,b,c成等比数列,可得b2=ac.已知a2-c2=ac+bc,可得b2+c2-a2=-bc,利用余弦定理可得A,再利用正弦定理即可得出 $\frac{b}{sinB}$的值.
解答 解:∵a,b,c成等比数列,
∴b2=ac.
在△ABC中,∵a2-c2=ac+bc,
∴a2-c2=b2+bc,即b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{2π}{3}$.
∴由正弦定理:$\frac{b}{sinB}=\frac{a}{sinA}$=$\frac{6}{\frac{\sqrt{3}}{2}}$=4$\sqrt{3}$,
故选:C.
点评 本题考查了正弦定理、余弦定理、等比数列的性质,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 93+12$\sqrt{2}$ | B. | 97+12$\sqrt{2}$ | C. | 105+12$\sqrt{2}$ | D. | 109+12$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com