精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在R上的偶函数,, .

1)求的解析式;并画出简图;

2)利用图象讨论方程的根的情况。(只需写出结果,不要解答过程)

3)若直线与函数的图像自左向右依次交于四个不同点 A,B,C,D .AB=BC,求实数k的值.

【答案】1,图象见解析;(2)见解析;(3)

【解析】

1)利用偶函数的定义,可以求出当时,的解析式,即可写出R上的解析式,作出函数在当时的图象,再根据偶函数关于轴对称,即可画出;

2)根据图象即可观察出方程的根的情况;

3)由图象的对称性,可知点与点关于直线对称,点与点关于轴对称,设出点的坐标,求出其它点的坐标,列出等式,求解即可.

1)因为是定义在R上的偶函数,当时,

,所以的解析式为

其图象如下:

2)由图象可知,

时,方程无根;

时,方程2个根;

时,方程3个根;

时,方程4个根.

3)由图象知,点与点关于直线对称,点与点关于轴对称,设点的坐标是,则点的坐标为,点的坐标是,由得,,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次诗词知识竞赛调查中,发现参赛选手分为两个年龄(单位:岁)段:,其中答对诗词名句与否的人数如图所示.

(1)完成下面2×2列联表;

年龄段

正确

错误

合计

合计

(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;

(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在岁范围人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=1-x2ex

1)讨论fx)的单调性;

2)当x≥0时,fxax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合和常数,定义:为集合相对的“余弦方差”.

(1)若集合,求集合相对的“余弦方差”;

(2)求证:集合相对任何常数的“余弦方差”是一个与无关的定值,并求此定值;

(3)若集合,相对任何常数的“余弦方差”是一个与无关的定值,求出.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:①对于任意的都有成立;②当,;;则不等式的解集为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为为线段上一点,且与平面所成角的正弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,判断的单调性;

(Ⅱ)当时,恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基因编辑婴儿“露露”和“娜娜”出生的消息成了全球瞩目的焦点,为了解学生对基因编辑婴儿的看法,某中学随机从该校一年级学生中抽取了100人进行调查,抽取的45女生中赞成基因编辑婴儿的占,而55名男生中有10人表示赞成基因编辑婴儿.

(1)完成列联表,并回答能否有90%的把握认为“对基因编辑婴儿是否赞成与性别有关”?

(2)现从该校不赞成基因编辑婴儿的学生中,采用分层抽样的方法抽取7名学生,再从被抽取的7名学生中任取3人,记被抽取的3名学生女生的人数为,求的分布列和期望.

查看答案和解析>>

同步练习册答案