(13分)计算(1);
(2).
科目:高中数学 来源: 题型:解答题
(本小题满分10分)已知函数为偶函数,且在上为增函数.
(1)求的值,并确定的解析式;
(2)若且,是否存在实数使在区间上的最大值为2,若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
有甲、乙两种商品,经销这两种商品所获的利润依次为(万元)和(万元),它们与投入的资金(万元)的关系,据经验估计为:, 今有3万元资金投入经销甲、乙两种商品,为了获得最大利润,应对甲、乙两种商品分别投入多少资金?总共获得的最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分分)
若函数在定义域内某区间上是增函数,而在上是减函数,
则称在上是“弱增函数”
(1)请分别判断=,在是否是“弱增函数”,
并简要说明理由;
(2)证明函数(是常数且)在上是“弱增函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数(),
(Ⅰ)求函数的最小值;
(Ⅱ)已知,:关于的不等式对任意恒成立;
:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com