精英家教网 > 高中数学 > 题目详情
15.函数$y=2\sqrt{2}sin(ωx+φ)$(其中ω>0,0<φ<π)的图象的一部分如图所示,则(  )
A.$ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$B.$ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$C.$ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$D.$ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$

分析 先利用图象中求得函数的周期,求得ω,最后根据x=2时取最大值,求得φ,即可得解.

解答 解:如图根据函数的图象可得:函数的周期为(6-2)×4=16,
又∵ω>0,
∴ω=$\frac{2π}{T}$=$\frac{π}{8}$,
当x=2时取最大值,即2$\sqrt{2}$sin(2×$\frac{π}{8}$+φ)=2$\sqrt{2}$,可得:2×$\frac{π}{8}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
∴φ=2kπ+$\frac{π}{4}$,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{4}$,
故选:B.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.据统计,我国每年交通事故死亡人数已经超过了10万人,我国汽车保有量不到全世界2%,但是交通事故死亡人数则占全球的20%,其中一个很重要的原因是国内很多驾驶员没有养成正确的驾驶习惯,没掌握事故发生前后正确的操作方法.某地交通管理部门从当地某驾校当期一班、二班学员中各随机抽取9名学员参加交通法规知识抽测,测试成绩绘制的茎叶图如下,其中有一个成绩模糊,用x表示.
(Ⅰ)平均抽测的一班、二班学员的平均分相同,求x的值,并写出这个平均分;
(Ⅱ)若在参加测试的成绩不低于90分分学员中任取两人,求这两个来自同一班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足不等式组$\left\{\begin{array}{l}x≥-1\\ x-y≥1\\ x-2y+1≤0\end{array}\right.$,则x+y的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.
(1)求第四个小矩形的高;
(2)估计本校在这次统测中数学成绩不低于120分的人数;
(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=sin(\frac{π}{2}-x)$是(  )
A.奇函数,且在区间$(0,\frac{π}{2})$上单调递增B.奇函数,且在区间$(0,\frac{π}{2})$上单调递减
C.偶函数,且在区间$(0,\frac{π}{2})$上单调递增D.偶函数,且在区间$(0,\frac{π}{2})$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足$f(\frac{π}{6})=f(\frac{5π}{6})=0$,给出以下四个结论:
①ω=3; ②ω≠6k,k∈N*;③φ可能等于$\frac{3}{4}π$; ④符合条件的ω有无数个,且均为整数.
其中所有正确的结论序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=[{\frac{x+1}{2}}]-[{\frac{x}{2}}](x∈N)$的值域为{0,1}.(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+cosα-2-x+cosα,x∈R,且$f(1)=\frac{{3\sqrt{2}}}{4}$.
(1)若0≤α≤π,求α的值;
(2)当m<1时,证明:f(m|cosθ|)+f(1-m)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知单位正方体ABCD-A′B′C′D′,E是正方形BCC′B′的中心.
(1)求AE与下底面所成角的大小;
(2)求异面直线AE与DD′所成的角的大小.
(理科)(3)求二面角E-AB-C的大小.

查看答案和解析>>

同步练习册答案